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NOMENCLATURE

Greek Variables:

α, Energy constant (1/s2)
β, Potential Constant (1/s2)

, Nutation angle (rad)𝜃
, Angular precession (rad)𝜙

ѱ, Angular spin (rad)
 , Angular velocities on x,y,z𝜔𝑥, 𝜔𝑦, 𝜔𝑧
 , Angular velocities on 1,2,3𝜔1, 𝜔2, 𝜔3

More Variables & Definitions:

1,2,3 Rotating system of reference (body-fixed frame)
a, Constant related to  (1/s)𝑝𝜓
b, Constant related to   (1/s)𝑝𝜙
f(u), Third degree polynomial in u

, Parameterℎ 
, Moment of Inertia on the axis 1 & 2 relative to the center of coordinates𝐼1,2

  , Moment of Inertia around axis 3𝐼3
l, location of the Center of gravity (CG) (m)

, Lagrangianℒ
Mg, Weight of the heavy symmetrical top with one point fixed (N)

, Angular momentum in ѱ direction (kg m2/s)𝑝𝜓

, Angular momentum in , direction (kg m2/s)𝑝𝜙 𝜙
, Angular momentum definition (kg m2/s)𝑝

q, Parameter
, Routhianℛ

t, Time (s)
, Variable  𝑢 𝑢 =  cos 𝜃

Initial value of 𝑢0 𝑢
, Roots of  {i=1,2 &3}𝑢𝑖 𝑓(𝑢)

X,Y,Z  Fixed system of reference
x,y,z  Rotating system of reference (body-fixed frame)
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ABSTRACT

The Equations of Motion (EOM) for the Heavy Symmetrical Top with One Point Fixed are highly non-
linear. The literature describes the numerical methods that are used to resolve this Classical system 
including modern tools i.e. the Runge-Kutta Fourth Order method. It is more difficult to derive closed-
form solutions for the EOM and as mentioned in the literature it is not always possible to find the close-
form solution for all the EOM. Fortunately, there are a few examples available that will serve as a guide 
to move further on this topic. It is the purpose of this paper to find a methodology that will produce the 
solutions for a given subset of EOM that fulfill certain requisites.  
The report is organized as follows: it starts with a very short summary of the literature available on this 
topic and quickly follows into the derivation of the EOM using the Euler-Lagrange method. The Routhian 
will be used to reduce the size of the expression. It continues with the formulation of the Classical cubic 
function ( ) through a novel process. The roots of  are of the utmost importance to be able to find 𝑓(𝑢) 𝑓(𝑢)
the EOM closed-form solution, and once the final roots are selected the general method that will produce 
the closed-form solutions is presented. Two sets of examples are included to show the validity of the 
process and comparisons of the results from the closed-form solutions vs. the numerical results for these 
examples are shown.  
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1. BACKGROUND

Back in the mid-1700s Euler made a great contribution to the dynamics of the rigid body with the first 
solution for the heavy symmetrical top with one point fixed [1]. In the following years many authors 
continued using the Euler equations [2],[3] alongside Newtonian Mechanics and created the basis for 
gyroscopes and their applications. Nowadays, the modern books of Classical Mechanics use the 
Lagrangian [4] because it greatly simplifies the derivation of the Equations of Motion (EOM) [5],[6]. 
Even further simplification is obtained using the Routhian [7]. The paper of Udwadia [8] shows an 
application of the Routhian.
In the topic of closed form solutions for the heavy symmetrical top with one point fixed the author has 
only two references available: MacMillan [9] and Fetter [10], which shows that is a topic that requires 
further research. The formulas that will be derived in this paper will hopefully serve the purpose of 
checking the results for numerical calculations and can also be used as a component of the controls for a 
gyroscope system.
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2. DERIVATION OF THE EQUATIONS OF MOTION (EOM)

The EOM will make use of the Euler angles that are shown on Figure 1.

 
Figure 1, (a) Euler angles, (b) Trajectories of the Center of Gravity.

Figure 1(a) [11] shows the Euler angles: which define the motion of the system. Figure 1(b) shows 𝜃,𝜙, 𝜓 
in red and blue lines the paths of the center of gravity (spin & precession). Also, it is shown the angular 
movement of axis 3 relative to z (  nutation).𝜃,
The Lagrangian ( ) for the system [12] is given by:ℒ = 𝑇 ― 𝑉

ℒ =  
𝐼1

2
(𝜃2 +  𝜙2sin2 𝜃) +  

𝐼3

2  (𝜓 + 𝜙cos 𝜃)2 ―  𝑀𝑔𝑙cos 𝜃                                                                         (1)
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Since the coordinates  and   are cyclic, the angular momentum  and  are constant.  The angular 𝜙 𝜓 𝑝𝜓 𝑝𝜙

velocities  and  can be eliminated by using the Routhian [7]:𝜙 𝜓

ℛ(𝜃, 𝜃, 𝑡) =  ℒ ― 𝑝𝜙𝜙(𝑝𝜙,𝑝𝜓,𝜃) ―  𝑝𝜓𝜓(𝑝𝜙,𝑝𝜓,𝜃)                                                                                       (2)

The equation of motion is derived from:

𝑑
𝑑𝑡(∂ℛ

∂𝜃) ―  
∂ℛ
∂𝜃 = 0                                                                                                                                                     (3)

And it is reduced to:

𝜃 = ( 1

𝐼1
2sin3 𝜃)(𝑝𝜙 ―  𝑝𝜓cos 𝜃)(𝑝𝜙cos 𝜃 ― 𝑝𝜓) +

𝑀𝑔𝑙
𝐼 1

sin 𝜃                                                                     (4)
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3. THE CUBIC POLYNOMIAL f(u)

The Classical EOM is of the form:  [12] and is typically shown on the literature as a derivation ∫𝑢
𝑢0

𝑑𝑢
𝑓(𝑢) = 𝑡

from the Conservation of Energy equation. The roots of this cubic polynomial  furnish the angles at 𝑓(𝑢)
which  changes in sign, in other words the extreme values of the nutation ( ) trajectory. It will be shown 𝜃 𝜃
on the next section that it is very important to select the most suitable value of the root  in order to 𝑢3
facilitate the creation of a closed-form solution. In this paper we will use a novel approach for the 
formulation of  as shown in the following lines:𝑓(𝑢)

The general expression shown in (4) could be further reduced by making the angular momentums equal:  
, then replacing in (4):𝑝 =  𝑝𝜙 = 𝑝𝜓

𝜃

∫
𝜃0 = 0

𝜃𝑑𝜃 =  
𝜃

∫
𝜃0

[ 𝑝2

𝐼1
2

(1 ― cos 𝜃)
sin 𝜃

(cos 𝜃 ― 1)
(1 ― cos2𝜃) +  (𝑀𝑔𝑙

𝐼1 )sin 𝜃]𝑑𝜃                                                              (5)

The parameter  is defined as follows:𝑞

(𝑝
𝐼1

)2
=  𝑞(𝑀𝑔𝑙

𝐼1 )                                                                                                                                                         (6)

And (5) is solved as:

1
2𝜃2 =  

𝜃

∫
𝜃0

[𝑞(𝑀𝑔𝑙
𝐼1 ) 1

sin 𝜃 
(cos 𝜃 ― 1)
(1 +  cos 𝜃) +  (𝑀𝑔𝑙

𝐼1 )sin 𝜃 ]𝑑𝜃                                                                        (7)

𝜃2 =  
2𝑀𝑔𝑙

𝐼1
 

𝜃

∫
𝜃0

[ 𝑞 (cos 𝜃 ― 1)
sin 𝜃(1 +  cos 𝜃) +  sin 𝜃 ]𝑑𝜃                                                                                              (8)

It is convenient to resolve (8) in terms of a new variable  as shown on the next line:𝑢 =  cos 𝜃

𝜃2 sin2𝜃 =   𝑢2 =   𝛽 sin2𝜃 
𝜃

∫
𝜃0

[ 𝑞 (cos 𝜃 ― 1)
sin 𝜃(1 +  cos 𝜃) +  sin 𝜃]𝑑𝜃                                                                  (9)

Where  , and using the expressions (10), (11) & (12):𝛽 =  
2𝑀𝑔𝑙

𝐼1
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sin2𝜃 =  (1 ―  cos2𝜃) =  (1 ―  𝑢2)                                                                                                                      (10)

𝜃

∫
𝜃0

𝑞 (cos 𝜃 ― 1)
sin 𝜃 (1 +  cos 𝜃) =  

―𝑞
(1 +  cos 𝜃) +  

𝑞
(1 +  cos 𝜃0)                                                                             (11)

𝜃

∫
𝜃0

sin 𝜃 𝑑𝜃 =  ― cos 𝜃 +  cos 𝜃0                                                                                                                          (12)

It is reached the final form of (9):

𝑢2 =  𝛽 (1 ― 𝑢) (𝑢 ―  𝑢0)[( 𝑞
(1 +  𝑢0) ― 1) ― 𝑢] = 𝑓(𝑢)                                                                              (13)

Where  is a third order polynomial.𝑓(𝑢)
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4. SELECTION OF THE ROOTS FOR f(u)

The  cubic polynomial has the following roots:𝑓(𝑢)

𝑢1 = 1,    𝑢2 =  𝑢0   &   𝑢3 =  ( 𝑞
(1 +  𝑢0) ― 1)                                                                                                 (14)

Further advancement for a closed-form solution of (13) is achieved by making the last root   . 𝑢3 = 1
Therefore,  will have a double root at  and the final form for (13) will be:𝑓(𝑢) 𝑢1 = 𝑢3 = 1

𝑢2 =  𝛽 (1 ― 𝑢)2 (𝑢 ―  𝑢0)                                                                                                                                     (15)

𝑢
= 𝑢( + ), ( ― ) =  ± 𝛽 (1 ― 𝑢) 𝑢 ―  𝑢0

                                                                                                            (16)

Notice that the parameters  and  are related to each other (14) because of the   condition (14):𝑞 𝑢0 𝑢3 = 1

 
𝑞

(1 +  𝑢0) = 2                                                                                                                                                            (17)
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5. GENERAL CLOSED-FORM SOLUTION OF THE EOM

The following lines explain the algorithm that is used for the general closed-form solution of the EOM. 
The process starts by defining the  (initial condition of the variable ) as a function of a new parameter 𝑢0 𝑢
h.

𝑢0 = 𝑓(ℎ) =  (ℎ ― 1
ℎ )                                                                                                                                             (18)

Recalling the positive form of (16):

𝑢 = 𝑢( + ) =  + 𝛽 (1 ― 𝑢) 𝑢 ―  𝑢0                                                                                                                    (19)

The integral form of this expression is:

𝑢

∫
𝑢0

𝑑𝑢

(1 ― 𝑢) 𝑢 ―  𝑢0
 =   

𝑡

∫
0

𝛽 𝑑𝑡                                                                                                                       (20)

From a Table of Integrals [13] it is found that:

∫𝑑(sech ―1 𝑥) =  ∫ ―1

𝑥 1 ―  𝑥2 𝑑𝑥                                                                                                                      (21)

Which will be used for the solution of (20).  The following change of variable is applied in (21):

1 ―  𝑥2 = 𝑢ℎ ― (ℎ ― 1)   𝑜𝑟       𝑥 =  ℎ (1 ― 𝑢)                                                                                              (22)

The differential of , results in:[𝑥2 = ℎ (1 ― 𝑢)]

𝑑𝑥 =  
―ℎ
2𝑥  𝑑𝑢                                                                                                                                                              (23)

Replacing (22), (23) in the left-hand side of (21):

∫ ―1 
―ℎ
2𝑥  𝑑𝑢  

1
𝑥 𝑢ℎ ― (ℎ ― 1)

                                                                                                                           (24)

Further manipulation produces:
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1
2 ∫ 1

(1 ― 𝑢) 
𝑑𝑢

ℎ 𝑢 ―  (ℎ ― 1
ℎ )

                                                                                                                         (25)

And using the definition (18) the left-hand side of (21) is converted to:

1
2 ℎ 

 ∫ 1
(1 ― 𝑢) 

𝑑𝑢
𝑢 ―  𝑢0

                                                                                                                                   (26)

Replacing the result of (20), (26) into the full expression of (21):

∫𝑑(sech ―1 𝑥) =   ∫ ―1

𝑥 1 ―  𝑥2 𝑑𝑥 =  
1

2 ℎ 
 ∫ 1

(1 ― 𝑢) 
𝑑𝑢

𝑢 ―  𝑢0
 =  

1
2 ℎ 

 𝛽 𝑡                           (27)

Replacing (22) in (27), is obtained:

sech ―1 ( ℎ (1 ― 𝑢)) ― sech ―1 ( ℎ (1 ― 𝑢0)) =
1
2 

𝛽
ℎ 𝑡                                                                             (28)

Since ,    (28) is further reduced to: sech ―1 ( ℎ (1 ― 𝑢0)) = 0

sech ―1 ( ℎ (1 ― 𝑢)) =
1
2 

𝛽
ℎ 𝑡                                                                                                                            (29)

Solving for the inner term in  it is obtained:sech ―1,

ℎ (1 ― 𝑢) =  sech2 (1
2

𝛽
ℎ 𝑡)                                                                                                                              (30)

The following trigonometric identities will help to reduce (30):

cosh (𝑥
2) =  

cosh (𝑥) + 1
2                                                                                                                                      (31)

sech (𝑥
2) =  

2
cosh (𝑥) + 1                                                                                                                                     (32)

When (32) is replaced in (30), and with the following result is obtained:𝑢 =  cos 𝜃 

1 ― cos 𝜃 =  (2
ℎ) 

1

cosh ( 𝛽
ℎ 𝑡) + 1

                                                                                                                   (33)
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With (33) it is feasible to define the nutation angle  as a function of time (t) for any parameter       𝜃 ℎ ≥ 1.
This paper presents the closed form solutions of two cases: h = 1 and h = 2 because with these parameters 
the expression (33) will produce simple closed-form solutions.

6. CLOSED-FORM SOLUTION FOR h = 1

Formula (33) has the following form for h = 1:

1 ― cos 𝜃 =   
2

cosh ( 𝛽 𝑡) + 1
                                                                                                                               (34)

Which reduces to:

cosh ( 𝛽 𝑡) ― 1

cosh ( 𝛽 𝑡) + 1
=  cos 𝜃                                                                                                                                        (35)

The following trigonometric property is applicable to (35):

 cos 𝜃 =   
cosh ( 𝛽 𝑡) ― 1

cosh ( 𝛽 𝑡) + 1 = tanh2 (1
2 𝛽 𝑡)                                                                                                         (36)  

Therefore, the closed form solution is:

𝑐𝑜𝑠 𝜃 =   𝑡𝑎𝑛ℎ2 (1
2

𝛽 𝑡)                                                                                                                                      (37)

An example is provided for comparisons purposes. The input data is shown on Table 1 and shows all the 
inputs required for the numerical calculations (Matlab: in-house code) and for the closed-form solution 
from (37).

Input Parameter Name Nomenclature Value Units
Theta initial location 𝜃0

𝜋
2

rad

Theta initial angular velocity  𝜃0
0 rad/s

Phi initial angular velocity
𝜙

11.23873 rad/s

Psi initial angular velocity
𝜓

209.49 rad/s

Inertia in axis xx & yy 𝐼1,2
2.33 E-03

𝑘𝑔 𝑚2

Mass of the Wheel
𝑀

0.1
𝑘𝑔 

Acceleration of gravity
𝑔

9.81 𝑚
𝑠2

Location of the CG
𝑙

0.15
𝑚

Inertia in axis zz 𝐼3
1.25 E-4

𝑘𝑔 𝑚2
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Angular Momentum 𝑝 =  𝑝𝜙 = 𝑝𝜓 0.0262 𝑘𝑔 𝑚2

𝑠2

Parameter 𝑞 2 -
Initial cos 𝜃0 𝑢0 0 -
Parameter ℎ 1 -

Table 1 Input data for the case h = 1

Figure 2 shows the results for  calculated using a numerical procedure and the exact solution 𝜃 = 𝑓(𝑡)
with the closed-form formula (37). Figure 3 shows the calculated percentual error between these two 
expressions on the range from 0 to 1 sec.

Figure 2., Results for h = 1 using the numerical procedure and the closed-form formula
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Figure 3., Percentual Error for the h = 1 case

At first glance the results from the numerical procedure (num) and the closed-form solution (cf) look the 
same, but looks can be deceiving because the percentual error (%) can be as high as 45% using the 
following expression:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑢𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 (%) =  
(𝜃𝑐𝑓 ― 𝜃𝑛𝑢𝑚)

𝜃𝑛𝑢𝑚
 100                                                                                                  (38)

The fact is that the amplitudes of the nutation angles  are so small that the human eye is not able to 𝜃
perceive the large percentual difference between them. 

7. CLOSED-FORM SOLUTION FOR h = 2

In a similar formulation to section 6, equation (33) has the following form for h = 2:

1 ― cos 𝜃 =  (1) 
1

cosh ( 𝛽
2 𝑡) + 1

                                                                                                                      (39)

The closed-form solution is:

sec 𝜃 =   1 + sech ( 𝛽
2 𝑡)                                                                                                                                   (40) 

The input data for this example is shown in Table 2 and defines all the inputs required for the numerical 
calculations (Matlab in-house code) and closed-form solution (40). 

Input Parameter Name Nomenclature Value Units
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Theta initial location 𝜃0
𝜋
3

rad

Theta initial angular velocity  𝜃0
0 rad/s

Phi initial angular velocity
𝜙

9.18 rad/s

Psi initial angular velocity
𝜓

251.98 rad/s

Inertia in axis xx & yy 𝐼1,2
2.33 E-03

𝑘𝑔 𝑚2

Mass of the Wheel
𝑀

0.1
𝑘𝑔 

Acceleration of gravity
𝑔

9.81 𝑚
𝑠2

Location of the CG
𝑙

0.15
𝑚

Inertia in axis zz 𝐼3
1.25 E-4

𝑘𝑔 𝑚2

Angular Momentum 𝑝 =  𝑝𝜙 = 𝑝𝜓 0.0321 𝑘𝑔 𝑚2

𝑠2

Parameter 𝑞 3 -
Initial cos 𝜃0 𝑢0 0.5 -
Parameter ℎ 2 -

Table 2 Input data for the case h = 2

Figure 4 shows the results for  calculated using a numerical procedure and the exact solution 𝜃 = 𝑓(𝑡)
with the closed-form formula (40). Figure 5 shows the calculated error between these two expressions on 
the range from 0 to 1 sec.

Figure 4., Results for h = 2 using a numerical procedure and the closed-form formula
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Figure 5., Percentual Error for the h = 2 case

8. CONCLUSIONS

Most of the time the EOM for the heavy symmetrical top with one point fixed are solved numerically 
because only a few closed-form solutions exist. This paper has shown that it is possible to obtain closed-
form solutions for those EOM that are able to satisfy the following conditions:

- The angular momentum  , are equal.𝑝 =  𝑝𝜙 = 𝑝𝜓

- The last root of the Cubic Polynomial has a value of 1(  and henceforth a link between the 𝑢3 = 1)
parameters q and  is created (14):𝑢0

 𝑢3 =
𝑞

(1 +  𝑢0) ― 1 = 1

- Therefore, all the parameters:  ,  and  are inter-connected with each other (6):𝑝 𝑞 𝑢0

(𝑝
𝐼1

)2
=  𝑞(𝑀𝑔𝑙

𝐼1 )
- Closed-form solutions are defined for all the positive values of the parameter h, where h defines 

the value of the initial angle  for the calculations according to (18):𝜃0
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𝑢0 = 𝑓(ℎ) =  (ℎ ― 1
ℎ ) ,    𝑓𝑜𝑟   ℎ ≥ 1

The results shown in this paper are only defined for the positive value of  (or ). Therefore, the 𝑢  𝑢( + )

solutions only cover a region of the total trajectory of the nutation angle 𝜃.
The large percent error, in both examples, is imperceptible to the human eye because these values are 
very close to zero. That could be considered an advantage for the numerical solutions results because 
being that the values are so low it would probably make no difference for practical purposes.

What started as research for closed-form solutions to check the numerical results for the EOMSs of the 
heavy symmetrical top with one point fixed has evolved into developing a full-procedure to produce 
closed-form solutions for a subset of EOM that are able to fulfill a series of conditions. A practical 
application of these results may be to incorporate the formulas (like (37), (40)) into the control system of 
a gyroscopic system. 
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